ВЫСОТА ПОЛЕТА. УСТРОЙСТВО И ПРИМЕНЕНИЕ ВЫСОТОМЕРОВ.

Высота полета.

Высотой полета называется расстояние до самолета, отсчитанное по вертикали от некоторого уровня, принятого за начало отсчета.

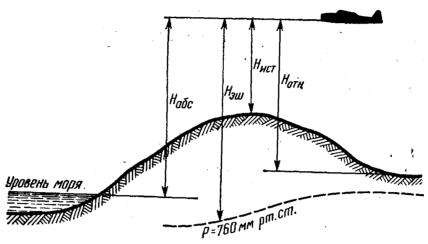


Рис. 1. Классификация высот полета по уровню начала отсчета

Истичная высота Нист отсчитывается от точки земной поверхности, находящейся под самолетом; *относительная Ноти* - от условного уровня (уровня аэродрома, цели и др.);

абсолютная Набс - от уровня моря;

высотва эшелона Нэш - от условного уровня, который соответствует стандартному атмосферному давлению 760 мм рт. ст.

Высота полета измеряется барометрическим, радиотехническим, инерциальным и электростатическим методами. Основными методами являются барометрический и радиотехнический.

Барометрический метод измерения высоты

Барометрический метод основан на использовании закономерного изменения атмосферного давления с высотой. Зависимость давления воздуха от высоты до 11000 м выражается формулой

$$P_{H} = P_{0}(1 - \frac{t_{zp}H}{T_{0}})\frac{1}{Rt_{zp}}.$$

Решая это уравнение относительно высоты, получим:

$$H = \left[1 - \left(\frac{P_{H}}{P_{0}} \right)^{t_{TP}R} \right] \frac{T_{0}}{t_{2D}},$$

где *R*-газовая постоянная (29, 27 м/град).

Из формулы видно, что измеряемая высота является функцией четырех параметров: давления на высоте полета P_{t} н, давления и температуры на уровне начала отсчета высоты P_{t} 0 и T_{t} 0 и температурного градиента t_{t} 2.

Если принять параметры Po, To и t_{2p} постоянными, то высоту можно определить как функцию атмосферного давления. Давление на высоте полета можно измерить непосредственно на самолете с помощью барометра (анероида). Шкала барометра градуируется в единицах высоты полета, такой прибор называется барометрическим высотомером.

Назначение и устройство барометрических высотомеров

Барометрические высотомеры предназначены для определения и выдерживания высоты полета. На летательных аппаратах устанавливаются двухстрелочные высотомеры **ВД-10**, **ВД-17**, **ВД-20**. Все они построены по одинаковой схеме и отличаются друг от друга главным образом диапазоном измерения.

Основными узлами высотомера являются чувствительный элемент, передаточно-множительный механизм, индикаторная часть, механизм установки начального давления, герметический корпус.

Внешний вид и кинематическая схема высотомера *ВД-17* показаны на *Puc. 2*и *Puc. 3*. В качестве чувствительного элемента в приборе применен анероидный блок, состоящий из двух коробок *1* (см. *Puc.* 3).

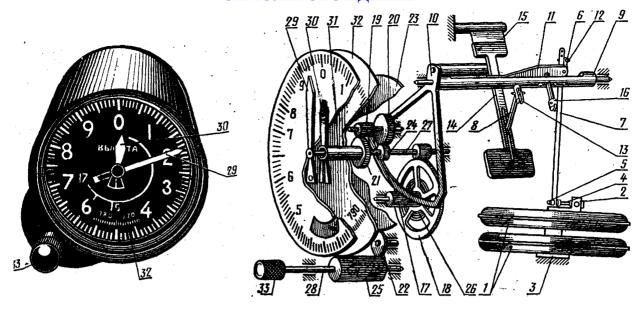


Рис. 2 Внешний вид высотомера ВД-17

Рис. 3, Кинематическая схема высотомера ВД-17
1- анероидные коробки; 2,3- центры; 4 - биметаллический валик
5, б — штифты 7, 8- тяги; 9-переходная ось; 10-зубчатый сектор; 11 — биметаллическая пластинка; 12, 13 - стойки; 14 - пружинный противовес; 15 - пружина; 16 — регулировочный винт; 17-25 - шестерни; 26 - волосок; 27, 28 - оси; 29, 30 - стрелки; 31 - коробок; 4 - втулка; 32 - шкала барометрического давления; 33 - головка кремальеры.

При изменении высоты полета изменяется давление воздуха, окружающего самолет. Изменение давления через штуцер в корпусе передается во внутреннюю полость прибора, в результате чего происходит деформация коробок блока, вызывающая перемещение верхнего центра 2. Это перемещение посредством тяги 7,

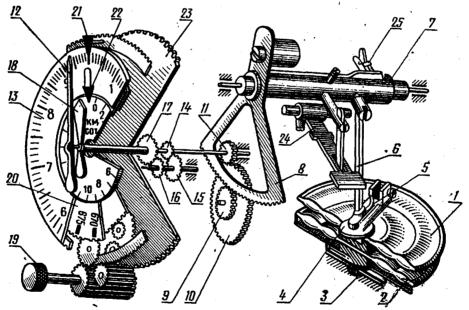


Рис. 4. Кинематическая схема высотомера ВД-20

1,2- блок анероидных коробок; 3 - неподвижный центр блока коробок; 4 - подвижный центр блока коробок; 5, 25 - температурные компенсаторы? б - тяга; 7 - промежуточный валик; 8 - зубчатый сектор; 9, 11, 14 - трибки; 10, 15, 16, 17-шестерни; 12-большая стрелка; 13 - внешняя шкала;/8 - малая стрелка; /9-кремальера; 20-шкала давлений; 2/, 22 - индексы; 23 - подвижное основание; 24 - пружинный балансир оси 9, сектора 10 и шестерен передается на большую стрелку прибора 29 и при помощи шестеренчатого перебора - на малую стрелку 30.

Большая стрелка прибора показывает по шкале высоту полета самолета в метрах. Эта стрелка делает полный оборот при изменении высоты на 1000 м. Малая стрелка прибора показывает высоту полета в километрах. Она делает один полный оборот при изменении высоты на 10000м.

При помощи кремальеры 33 в прибор можно вводить поправки на изменение барометрического давления.

Погрешность прибора у земли ± 20 м, а на высоте 17000м ± 300 м.

На Рис. 4 показана кинематическая схема высотомера ВД-20. С увеличением высоты полета вследствие уменьшения статического давления анероидный блок, включающий коробки 1 и 2, расширяется. Ход его подвижного центра 4 с помощью температурного компенсатора 5, тяги 6 и температурного компенсатора 25 передается через валик 7 на зубчатый сектор 8. Перемещение сектора вызывает вращение трибки 9, шестерни 10 и трибки 11. На оси трибки 11 жестко укреплена большая стрелка 12, указывающая по шкале 13 высоту полета самолета в метрах. Диапазон этой шкалы 1000 м. На ось большой стрелки 12 жестко посажена переходная трибка 14, приводящая во вращение шестерни 15, 16 и 17, дающие передаточное отношение 20:1. На полой оси шестерни 17, через которую проходит ось трибки 11, укреплена малая стрелка 18, указывающая по внутренней' шкале высоту в километрах. Диапазон шкалы 20 км. Механизм высотомера, включая анероидный блок, укреплен на подвижном основании 23 и может вращаться относительно корпуса прибора. При этом будут вращаться стрелки 12 и 18, шкала давлений 20 ,и два индекса 21 и 22. Вращение осуществляется с помощью кремальеры 19.

Для уравновешивания отдельных узлов механизма высотомера поставлен пружинный балансир 24. Погрешность в показаниях прибора, возникающая вследствие изменения упругих свойств анероидных коробок в зависимости от их температуры, устраняется с помощью биметаллических температурных компенсаторов 5 и 25.

Погрешность прибора минимальна у 3емли и составляет ± 20 м и максимальна на высоте 20 км (± 350 м).

Высотомер ВД-10 предназначен для измерения высоты от 0 до 10000 м. Погрешность ВД-10 у Земли составляет \pm 15 м, а на высоте 10 км достигает \pm 120 м.

Ошибки барометрических высотомеров

Барометрическим высотомерам присущи инструментальные, аэродинамические и методические ошибки.

Инструментальные ошибки $\Delta H_{инстр}$ возникают вследствие несовершенства изготовления механизма высотомера, износа деталей и изменения упругих свойств чувствительного элемента. Они определяются в лабораторных условиях. По результатам лабораторной проверки составляются таблицы, в которых указываются значения инструментальных поправок для различных высот полета.

Аэродинамические ошибки ΔH_a являются результатом неточного измерения атмосферного давления на высоте полета из-за искажения воздушного потока в месте его приема, особенно при полете на больших скоростях. Эти ошибки зависят от скорости полета, типа приемника воздушного давления и места его расположения, они определяются при испытаниях самолетов и заносятся в таблицу поправок. В целях упрощения инструментальные и аэродинамические поправки суммируются, и составляется таблица показаний высотомера с учетом суммарных поправок, которая помещается в кабинах самолета.

Методические ошибки обусловлены несовпадением фактического состояния атмосферы с данными, положенными в основу расчета шкалы высотомера: давление воздуха Po = 760 мм рт ст., температура t_0 =+15° C, температурный вертикальный градиент trp = 6,5° на 1000 м высоты.

Методические ошибки включают три составляющие. Первая – барометрическая ошибка. В полете барометрический высотомер измеряет высоту относительно того, уровня, давление которого установлено на шкале. Он не учитывает изменение давления по маршруту. Обычно атмосферное давление в различных точках земной поверхности в один и тот же момент неодинаковое. Поэтому истинная высота будет изменяться в зависимости от распределения атмосферного давления у Земли. При падении атмосферного давления по маршруту истинная высота будет уменьшаться, при повышении давления - увеличиваться, т. е. возникает барометрическая ошибка **ДНбар**, обусловленная непостоянством атмосферного давления у Земли.

Ошибка $\Delta H \delta ap$ учитывается следующим образом: *перед вылетом* - установкой стрелок высотомера на нуль; *перед посадкой* - установкой на высотомере давления аэродрома посадки; *при расчете высот* - путем учета поправки на изменение атмосферного давления.

Причиной второй составляющей методической ошибки **ДНтемп** является несоответствие фактического распределения температуры воздуха с высотой стандартным значениям, принятым в расчете механизма высотомера. Температурная ошибка особенно опасна при полетах на малых высотах и в горных районах в холодное время года. В практике считают, что для малых высот каждые 3° отклонения фактической температуры воздуха от стандартной вызывают ошибку, равную 1% измеряемой высоты. Обычно методическая температурная поправка учитывается с помощью навигационной линейки **НЛ-10М** или навигационного расчетчика **НРК-2**.

Третья составляющая - *ДНрел* возникает потому, что высотомер в продолжение всего полета указывает высоту не над пролетаемой местностью, а относительно уровня изобарической поверхности, атмосферное давление которого установлено на приборе. Чем разнообразнее рельеф пролетаемой местности, тем больше будут расходиться показания высотомера с истинной высотой.

Для определения истинной высоты полета необходимо учитывать поправку на рельеф пролетаемой местности, которая определяется

$$\Delta H_{pen} = H_{pen} - H_{a \ni p}$$

где *ДНрел* - поправка на рельеф пролетаемой местности, имеет знак (+), если абсолютная высота точки выше аэродрома взлета, и знак (-), если ниже;

Нрел - абсолютная высота точки рельефа местности. определяется летчиком (экипажем) по полетной карте;

Наэр - абсолютная высота аэродрома взлета.

Тогда:

$$H_{ucm} = H_{omh} - \Delta H_{pen}$$

где Нотн - относительная высота.

Определение истинной и приборной высоты при полете по маршруту

Первый вариант. Давление на уровне пролетаемой местности известно и установлено на высотомере, темпера тура в воздухе известна. В этом случае истинная высота полета определяется по формуле

$$H_{ucm} = H_{np} + \Delta H_{uncmp} + \Delta H_{a} + \Delta H_{memn}$$

Расчет приборной высоты для заданной истинной высоты производится в обратном порядке

$$H_{np} = H_{ucm} - \Delta H_{memn}, -\Delta H_a - \Delta H_{uncmp}.$$

Второй вариант. Давление и температура у земли в районе пролетаемой местности неизвестны; на высотомере установлено давление аэродрома взлета.

Тогда истинная высота полета определяется по формуле:

$$H_{ucm} = H_{np} + \Delta H_{uhcmp} + \Delta H_a + \Delta H_{memn} - \Delta H_{pen}$$

 $H_{ucm} = H_{np} + \Delta H_{uncmp} + \Delta H_a + \Delta H_{memn} - \Delta H_{pen}$. Определение приборной высоты при заданной истиной производится по формуле:

$$H_{np} = H_{ucm} + \Delta H_{pen}$$
, $-\Delta H_{memn} - \Delta H_{uhcmp}$. $-\Delta H_a - \Delta H_{uhcmp}$.